The Same Distribution of Limit Cycles in Five perturbed cubic Hamiltonian Systems
نویسندگان
چکیده
Using the method of qualitative analysis we show that five perturbed cubic Hamiltonian systems have the same distribution of limit cycles and have 11 limit cycles for some parameters. The accurate location of each limit cycle is given by numerical exploration. In other words, we demonstrate the existence of 11 limit cycles and their distribution in five perturbed systems in two ways, the results obtained from both ways are the same.
منابع مشابه
Limit cycle analysis on a cubic Hamiltonian system with quintic perturbed terms
This paper intends to explore bifurcation behavior of limit cycles for a cubic Hamiltonian system with quintic perturbed terms using both qualitative analysis and numerical exploration. To obtain the maximum number of limit cycles, a quintic perturbed function with the form of R(x, y, λ) = S(x, y, λ) = mx2 + ny2 + ky4 − λ is added to a cubic Hamiltonian system, where m, n, k and λ are all varia...
متن کاملBifurcation of Limit Cycles in a Cubic Hamiltonian System with Perturbed Terms
Bifurcation of limit cycles in a cubic Hamiltonian system with quintic perturbed terms is investigated using both qualitative analysis and numerical exploration. The investigation is based on detection functions which are particularly effective for the perturbed cubic Hamiltonian system. The study reveals firstly that there are at most 15 limit cycles in the cubic Hamiltonian system with pertur...
متن کاملLimit Cycle bifurcations from Centers of Symmetric Hamiltonian Systems perturbed by cubic polynomials
In this paper, we consider some cubic near-Hamiltonian systems obtained from perturbing the symmetric cubic Hamiltonian system with two symmetric singular points by cubic polynomials. First, following Han [2012] we develop a method to study the analytical property of the Melnikov function near the origin for near-Hamiltonian system having the origin as its elementary center or nilpotent center....
متن کاملBifurcation of Limit Cycles in a Cubic Hamiltonian System with Some Special Perturbed Terms
This paper presents an analysis on the bifurcation of limit cycles for a cubic Hamiltonian system with quintic perturbed terms using both qualitative analysis and numerical exploration. The perturbed terms considered here is in the form of R(x, y, λ) = S(x, y, λ) = mx+ny+kxy−λ, where m, n, k, and λ are all variable. The investigation is based on detection functions which are particularly effect...
متن کاملBifurcation Set and Limit Cycles Forming Compound Eyes in a Perturbed Hamiltonian System
BIFURCATION SET AND LIMIT CYCLES FORMING COMPOUND EYES IN A PERTURBED HAMILTONIAN SYSTEM JIBIN LI AND ZHENRONG LIU In this paper we consider a class of perturbation of a Hamiltonian cubic system with 9 finite critical points . Using detection functions, we present explicit formulas for the global and local bifurcations of the flow . We exhibit various patterns of compound eyes of limit cycles ....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- I. J. Bifurcation and Chaos
دوره 13 شماره
صفحات -
تاریخ انتشار 2003